Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.339
Filtrar
1.
Sci Rep ; 14(1): 9370, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653980

RESUMO

Culture of muscle cells from livestock species has typically involved laborious enzyme-based approaches that yield heterogeneous populations with limited proliferative and myogenic differentiation capacity, thus limiting their use in physiologically-meaningful studies. This study reports the use of a simple explant culture technique to derive progenitor cell populations from porcine muscle that could be maintained and differentiated long-term in culture. Fragments of semitendinosus muscle from 4 to 8 week-old piglets (n = 4) were seeded on matrigel coated culture dishes to stimulate migration of muscle-derived progenitor cells (MDPCs). Cell outgrowths appeared within a few days and were serially passaged and characterised using RT-qPCR, immunostaining and flow cytometry. MDPCs had an initial mean doubling time of 1.4 days which increased to 2.5 days by passage 14. MDPC populations displayed steady levels of the lineage-specific markers, PAX7 and MYOD, up until at least passage 2 (positive immunostaining in about 40% cells for each gene), after which the expression of myogenic markers decreased gradually. Remarkably, MDPCs were able to readily generate myotubes in culture up until passage 8. Moreover, a decrease in myogenic capacity during serial passaging was concomitant with a gradual increase in the expression of the pre-adipocyte markers, CD105 and PDGFRA, and an increase in the ability of MDPCs to differentiate into adipocytes. In conclusion, explant culture provided a simple and efficient method to harvest enriched myogenic progenitors from pig skeletal muscle which could be maintained long-term and differentiated in vitro, thus providing a suitable system for studies on porcine muscle biology and applications in the expanding field of cultured meat.


Assuntos
Diferenciação Celular , Músculo Esquelético , Células-Tronco , Animais , Suínos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Desenvolvimento Muscular , Células Cultivadas , Técnicas de Cultura de Células/métodos , Proliferação de Células , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo
2.
Nutrition ; 101: 111662, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660501

RESUMO

OBJECTIVES: Intermittent fasting (IF) activates autophagy in cardiac muscle and pancreatic islets. We examined the effect of IF on markers of autophagy in liver and skeletal muscle in mice and in humans. METHODS: Ten-wk-old C57 BL/6 J male mice were ad libitum (AL) fed a high-fat diet (HFD) or chow diet for 8 wk, before randomization to AL or IF (24-h fast, 3 non-consecutive days per week) for 8 wk (8-16 per group). Tissue was collected in the fed or 22-h fasted state. Fifty women (51 ± 2 y, 31.8 ± 4.3 kg/m2) were randomly assigned to one of two IF protocols (24-hfast, 3 non-consecutive days per week) and fed at 70% (IF70) or 100% (IF100) of energy requirements for 8 wk. Vastus lateralis muscle was collected at 0800 after 12- and 24-h fasts. Microtubule-associated protein light chain 1 (Map1 lc3 b), Beclin1 (Becn1), Sequestosome 1 (Sqstm1/p62), and Lysosomal associated membrane protein 2 (Lamp2) were assessed by quantitative polymerase chain reaction and LC3, BECLIN1 and LAMP1 protein content by immunoblotting. RESULTS: Fasting increased hepatic LC3 I protein and Map1 lc3 b mRNA levels in IF mice fed chow or HFD. LAMP1 protein and Beclin1 mRNA levels in liver were also increased by fasting, but only in chow-fed mice. IF did not activate markers of autophagy in mouse muscle. In humans, a 24-h fast increased SQSTM1. BECLIN1, SQSTM1 and LAMP2 mRNA levels were decreased in IF70 after a 12-h overnight fast . CONCLUSION: Markers of autophagy in liver, but not in muscle, were elevated in response to IF in mice. In humans, autophagy markers in muscle were reduced, likely in response to weight loss.


Assuntos
Jejum , Fígado , Músculo Esquelético , Animais , Autofagia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Biomarcadores , Jejum/metabolismo , Feminino , Humanos , Fígado/citologia , Fígado/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , RNA Mensageiro , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo
3.
Cell Mol Life Sci ; 79(3): 170, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35238991

RESUMO

Numerous studies have established the critical roles of microRNAs in regulating post-transcriptional gene expression in diverse biological processes. Here, we report on the role and mechanism of miR-24-3p in skeletal muscle differentiation and regeneration. miR-24-3p promotes myoblast differentiation and skeletal muscle regeneration by directly targeting high mobility group AT-hook 1 (HMGA1) and regulating it and its direct downstream target, the inhibitor of differentiation 3 (ID3). miR-24-3p knockdown in neonatal mice increases PAX7-positive proliferating muscle stem cells (MuSCs) by derepressing Hmga1 and Id3. Similarly, inhibition of miR-24-3p in the tibialis anterior muscle prevents Hmga1 and Id3 downregulation and impairs regeneration. These findings provide evidence that the miR-24-3p/HMGA1/ID3 axis is required for MuSC differentiation and skeletal muscle regeneration in vivo.


Assuntos
Proteína HMGA1a/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/citologia , Mioblastos
4.
Nat Commun ; 13(1): 653, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115527

RESUMO

Mitochondria are energy-generating organelles and mitochondrial biogenesis is stimulated to meet energy requirements in response to extracellular stimuli, including exercise. However, the mechanisms underlying mitochondrial biogenesis remain unknown. Here, we demonstrate that transcriptional coactivator with PDZ-binding motif (TAZ) stimulates mitochondrial biogenesis in skeletal muscle. In muscle-specific TAZ-knockout (mKO) mice, mitochondrial biogenesis, respiratory metabolism, and exercise ability were decreased compared to wild-type mice. Mechanistically, TAZ stimulates the translation of mitochondrial transcription factor A via Ras homolog enriched in brain (Rheb)/Rheb like 1 (Rhebl1)-mTOR axis. TAZ stimulates Rhebl1 expression via TEA domain family transcription factor. Rhebl1 introduction by adeno-associated virus or mTOR activation recovered mitochondrial biogenesis in mKO muscle. Physiologically, mKO mice did not stimulate exercise-induced mitochondrial biogenesis. Collectively, our results suggested that TAZ is a novel stimulator for mitochondrial biogenesis and exercise-induced muscle adaptation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA/genética , Mitocôndrias Musculares/genética , Proteínas Mitocondriais/genética , Biogênese de Organelas , Condicionamento Físico Animal , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
5.
Nat Commun ; 13(1): 947, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177647

RESUMO

Skeletal muscle stem cells, also called Satellite Cells (SCs), are actively maintained in quiescence but can activate quickly upon extrinsic stimuli. However, the mechanisms of how quiescent SCs (QSCs) activate swiftly remain elusive. Here, using a whole mouse perfusion fixation approach to obtain bona fide QSCs, we identify massive proteomic changes during the quiescence-to-activation transition in pathways such as chromatin maintenance, metabolism, transcription, and translation. Discordant correlation of transcriptomic and proteomic changes reveals potential translational regulation upon SC activation. Importantly, we show Cytoplasmic Polyadenylation Element Binding protein 1 (CPEB1), post-transcriptionally affects protein translation during SC activation by binding to the 3' UTRs of different transcripts. We demonstrate phosphorylation-dependent CPEB1 promoted Myod1 protein synthesis by binding to the cytoplasmic polyadenylation elements (CPEs) within its 3' UTRs to regulate SC activation and muscle regeneration. Our study characterizes CPEB1 as a key regulator to reprogram the translational landscape directing SC activation and subsequent proliferation.


Assuntos
Músculo Esquelético/lesões , Biossíntese de Proteínas/genética , Regeneração/genética , Células Satélites de Músculo Esquelético/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/citologia , Proteína MyoD/biossíntese , Proteômica , RNA-Seq
6.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163664

RESUMO

Cardiac patch implantation helps maximize the paracrine function of grafted cells and serves as a reservoir of soluble proangiogenic factors required for the neovascularization of infarcted hearts. We have previously fabricated a cardiac patch, EF-HAM, composed of a human amniotic membrane (HAM) coated with aligned PLGA electrospun fibers (EF). In this study, we aimed to evaluate the biocompatibility and angiogenic effects of EF-HAM scaffolds with varying fiber thicknesses on the paracrine behavior of skeletal muscle cells (SkM). Conditioned media (CM) obtained from SkM-seeded HAM and EF-HAM scaffolds were subjected to multiplex analysis of angiogenic factors and tested on HUVECs for endothelial cell viability, migration, and tube formation analyses. All three different groups of EF-HAM scaffolds demonstrated excellent biocompatibility with SkM. CM derived from SkM-seeded EF-HAM 7 min scaffolds contained significantly elevated levels of proangiogenic factors, including angiopoietin-1, IL-8, and VEGF-C compared to plain CM, which was obtained from SkM cultured on the plain surface. CM obtained from all SkM-seeded EF-HAM scaffolds significantly increased the viability of HUVECs compared to plain CM after five days of culture. However, only EF-HAM 7 min CM induced a higher migration capacity in HUVECs and formed a longer and more elaborate capillary-like network on Matrigel compared with plain CM. Surface roughness and wettability of EF-HAM 7 min scaffolds might have influenced the proportion of skeletal myoblasts and fibroblasts growing on the scaffolds and subsequently potentiated the angiogenic paracrine function of SkM. This study demonstrated the angioinductive properties of EF-HAM composite scaffold and its potential applications in the repair and regeneration of ischemic tissues.


Assuntos
Isquemia/terapia , Neovascularização Fisiológica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Regeneração/fisiologia , Engenharia Tecidual/métodos , Tecidos Suporte/química , Âmnio , Angiopoietina-1/metabolismo , Materiais Biocompatíveis/química , Movimento Celular , Sobrevivência Celular , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-8/metabolismo , Isquemia/patologia , Células Musculares/citologia , Células Musculares/metabolismo , Células Musculares/ultraestrutura , Músculo Esquelético/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Cell Mol Life Sci ; 79(3): 149, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35199227

RESUMO

The in vitro generation of human cardiomyocytes derived from induced pluripotent stem cells (iPSC) is of great importance for cardiac disease modeling, drug-testing applications and for regenerative medicine. Despite the development of various cultivation strategies, a sufficiently high degree of maturation is still a decisive limiting factor for the successful application of these cardiac cells. The maturation process includes, among others, the proper formation of sarcomere structures, mediating the contraction of cardiomyocytes. To precisely monitor the maturation of the contractile machinery, we have established an imaging-based strategy that allows quantitative evaluation of important parameters, defining the quality of the sarcomere network. iPSC-derived cardiomyocytes were subjected to different culture conditions to improve sarcomere formation, including prolonged cultivation time and micro patterned surfaces. Fluorescent images of α-actinin were acquired using super-resolution microscopy. Subsequently, we determined cell morphology, sarcomere density, filament alignment, z-Disc thickness and sarcomere length of iPSC-derived cardiomyocytes. Cells from adult and neonatal heart tissue served as control. Our image analysis revealed a profound effect on sarcomere content and filament orientation when iPSC-derived cardiomyocytes were cultured on structured, line-shaped surfaces. Similarly, prolonged cultivation time had a beneficial effect on the structural maturation, leading to a more adult-like phenotype. Automatic evaluation of the sarcomere filaments by machine learning validated our data. Moreover, we successfully transferred this approach to skeletal muscle cells, showing an improved sarcomere formation cells over different differentiation periods. Overall, our image-based workflow can be used as a straight-forward tool to quantitatively estimate the structural maturation of contractile cells. As such, it can support the establishment of novel differentiation protocols to enhance sarcomere formation and maturity.


Assuntos
Sinalização do Cálcio/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Sarcômeros/metabolismo , Actinina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Humanos , Aprendizado de Máquina , Camundongos , Microscopia de Fluorescência/métodos , Músculo Esquelético/citologia , Miocárdio/citologia , Fenótipo , RNA/genética , RNA/isolamento & purificação
8.
Exp Cell Res ; 411(2): 112990, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973262

RESUMO

Human pluripotent stem cells (hPSCs) provide a human model for developmental myogenesis, disease modeling and development of therapeutics. Differentiation of hPSCs into muscle stem cells has the potential to provide a cell-based therapy for many skeletal muscle wasting diseases. This review describes the current state of hPSCs towards recapitulating human myogenesis ex vivo, considerations of stem cell and progenitor cell state as well as function for future use of hPSC-derived muscle cells in regenerative medicine.


Assuntos
Desenvolvimento Muscular/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Diferenciação Celular/fisiologia , Humanos , Modelos Biológicos , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/fisiologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia
9.
Nat Commun ; 13(1): 205, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017543

RESUMO

The genome exists as an organized, three-dimensional (3D) dynamic architecture, and each cell type has a unique 3D genome organization that determines its cell identity. An unresolved question is how cell type-specific 3D genome structures are established during development. Here, we analyzed 3D genome structures in muscle cells from mice lacking the muscle lineage transcription factor (TF), MyoD, versus wild-type mice. We show that MyoD functions as a "genome organizer" that specifies 3D genome architecture unique to muscle cell development, and that H3K27ac is insufficient for the establishment of MyoD-induced chromatin loops in muscle cells. Moreover, we present evidence that other cell lineage-specific TFs might also exert functional roles in orchestrating lineage-specific 3D genome organization during development.


Assuntos
Genoma , Histonas/genética , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Mioblastos/metabolismo , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Linhagem Celular , Linhagem da Célula/genética , Montagem e Desmontagem da Cromatina , Cromossomos/química , Cromossomos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/citologia , Proteína MyoD/metabolismo , Mioblastos/citologia , Miogenina/genética , Miogenina/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais
10.
Stem Cell Reports ; 17(1): 82-95, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021050

RESUMO

Adult skeletal muscle stem cells (MuSCs) are important for muscle regeneration and constitute a potential source of cell therapy. However, upon isolation, MuSCs rapidly exit quiescence and lose transplantation potency. Maintenance of the quiescent state in vitro preserves MuSC transplantation efficiency and provides an opportunity to study the biology of quiescence. Here we show that Tubastatin A (TubA), an Hdac6 inhibitor, prevents primary cilium resorption, maintains quiescence, and enhances MuSC survival ex vivo. Phenotypic characterization and transcriptomic analysis of TubA-treated cells revealed that TubA maintains most of the biological features and molecular signatures of quiescence. Furthermore, TubA-treated MuSCs showed improved engraftment ability upon transplantation. TubA also induced a return to quiescence and improved engraftment of cycling MuSCs, revealing a potentially expanded application for MuSC therapeutics. Altogether, these studies demonstrate the ability of TubA to maintain MuSC quiescence ex vivo and to enhance the therapeutic potential of MuSCs and their progeny.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Músculo Esquelético/citologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Animais , Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Transplante de Células-Tronco , Transcriptoma
11.
J Cell Sci ; 135(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35099008

RESUMO

Muscle stem (satellite) cells express Pax7, a key transcription factor essential for satellite cell maintenance and adult muscle regeneration. We identify the corepressor transducin-like enhancer of split-4 (TLE4) as a Pax7 interaction partner expressed in quiescent satellite cells under homeostasis. A subset of satellite cells transiently downregulate TLE4 during early time points following muscle injury. We identify these to be activated satellite cells, and that TLE4 downregulation is required for Myf5 activation and myogenic commitment. Our results indicate that TLE4 represses Pax7-mediated Myf5 transcriptional activation by occupying the -111 kb Myf5 enhancer to maintain quiescence. Loss of TLE4 function causes Myf5 upregulation, an increase in satellite cell numbers and altered differentiation dynamics during regeneration. Thus, we have uncovered a novel mechanism to maintain satellite cell quiescence and regulate muscle differentiation mediated by the corepressor TLE4.


Assuntos
Diferenciação Celular , Desenvolvimento Muscular , Músculo Esquelético , Proteínas Nucleares , Proteínas Repressoras , Diferenciação Celular/genética , Humanos , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/lesões , Doenças Musculares/fisiopatologia , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX7/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células Satélites de Músculo Esquelético/citologia
12.
Eur J Appl Physiol ; 122(3): 541-559, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35037123

RESUMO

Skeletal muscle cells can both gain and lose volume during periods of exercise and rest. Muscle cells do not behave as perfect osmometers because the cell volume changes are less than predicted from the change in extracellular osmolality. Therefore, there are mechanisms involved in regulating cell volume, and they are different for regulatory volume decreases and regulatory volume increases. Also, after an initial rapid change in cell volume, there is a gradual and partial recovery of cell volume that is effected by ion and water transport mechanisms. The mechanisms have been studied in non-contracting muscle cells, but remain to be fully elucidated in contracting muscle. Changes in muscle cell volume are known to affect the strength of contractile activity as well as anabolic/catabolic signaling, perhaps indicating that cell volume should be a regulated variable in skeletal muscle cells. Muscles contracting at moderate to high intensity gain intracellular volume because of increased intracellular osmolality. Concurrent increases in interstitial (extracellular) muscle volume occur from an increase in osmotically active molecules and increased vascular filtration pressure. At the same time, non-contracting muscles lose cell volume because of increased extracellular (blood) osmolality. This review provides the physiological foundations and highlights key concepts that underpin our current understanding of volume regulatory processes in skeletal muscle, beginning with consideration of osmosis more than 200 years ago and continuing through to the process of regulatory volume decrease and regulatory volume increase.


Assuntos
Tamanho Celular , Exercício Físico/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Humanos , Concentração Osmolar , Osmose/fisiologia , Transdução de Sinais
13.
J Fluoresc ; 32(2): 569-582, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35006485

RESUMO

Fluorescently labelling proteins such as insulin have wide ranging applications in a pharmaceutical research and drug delivery. Human insulin (Actrapid®) was labelled with fluorescein isothiocyanate (FITC) and the synthesised conjugate identified using reverse phase high performance liquid chromatography (RP-HPLC) on a C18 column and a gradient method with mobile phase A containing 0.1% trifluoroacetic acid (TFA) in Millipore water and mobile phase B containing 90% Acetonitrile, 10% Millipore water and 0.1% TFA. Syntheses were carried out at varying reaction times between 4 and 20 h. Mono-labelled FITC-insulin conjugate was successfully synthesised with labelling at the B1 position on the insulin chain using a molar ratio of 2:1 (FITC:insulin) at a reaction time of 18 h and confirmed by electrospray mass spectroscopy. Reactions were studied across a pH range of 7-9.8 and the quantities switch from mono-labelled to di-labelled FITC-insulin conjugates at a reaction time of 2 h (2:1 molar ratio) at pH > 8. The conjugates isolated from the studies had biological activities in comparison to native insulin of 99.5% monoB1, 78% monoA1, 51% diA1B1 and 0.06% triA1B1B29 in HUVEC cells by examining AKT phosphorylation levels. MonoB1 FITC-insulin conjugate was also compared to native insulin by examining cell surface GLUT4 in C2C12 skeletal muscle cells. No significant difference in the cellular response was observed for monoB1 produced in-house compared to native insulin. Therefore mono-labelled FITC-insulin at the B1 position showed similar biological activity as native insulin and can potentially be used for future biomedical applications.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Fluoresceína-5-Isotiocianato/análogos & derivados , Insulina/análogos & derivados , Western Blotting , Células Cultivadas , Fluoresceína-5-Isotiocianato/síntese química , Fluoresceína-5-Isotiocianato/isolamento & purificação , Fluorescência , Transportador de Glucose Tipo 4/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Insulina/síntese química , Insulina/isolamento & purificação , Insulina/farmacologia , Espectrometria de Massas , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Músculo Esquelético/citologia , Fosfatos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
14.
Genes (Basel) ; 13(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35052483

RESUMO

Despite impressive results in restoring physical performance in rodent models, treatment with renin-angiotensin system (RAS) inhibitors, such as Lisinopril, have highly mixed results in humans, likely, in part, due to genetic variation in human populations. To date, the genetic determinants of responses to drugs, such as RAS inhibitors, remain unknown. Given the complexity of the relationship between physical traits and genetic background, genomic studies which predict genotype- and age-specific responses to drug treatments in humans or vertebrate animals are difficult. Here, using 126 genetically distinct lines of Drosophila melanogaster, we tested the effects of Lisinopril on age-specific climbing speed and endurance. Our data show that functional response and sensitivity to Lisinopril treatment ranges from significant protection against physical decline to increased weakness depending on genotype and age. Furthermore, genome-wide analyses led to identification of evolutionarily conserved genes in the WNT signaling pathway as being significantly associated with variations in physical performance traits and sensitivity to Lisinopril treatment. Genetic knockdown of genes in the WNT signaling pathway, Axin, frizzled, nemo, and wingless, diminished or abolished the effects of Lisinopril treatment on climbing speed traits. Our results implicate these genes as contributors to the genotype- and age-specific effects of Lisinopril treatment and because they have orthologs in humans, they are potential therapeutic targets for improvement of resiliency. Our approach should be widely applicable for identifying genomic variants that predict age- and sex-dependent responses to any type of pharmaceutical treatment.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Lisinopril/farmacologia , Desempenho Físico Funcional , Fatores Etários , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo
15.
Sci Rep ; 12(1): 827, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039582

RESUMO

In vitro skeletal muscle cell production is emerging in the field of artificial lab-grown meat as alternative future food. Currently, there is an urgent paradigm shift towards a serum replacement culture system. Surprisingly, little is known about the impact of serum-free culture on skeletal muscle cells to date. Therefore, we performed metabolic profiling of the C2C12 myoblasts and myotubes in serum-free mediums (B27, AIM-V) and compared it with conventional serum supplementation culture. Furthermore, cell morphology, viability, and myogenic differentiation were observed for 7 days of cultivation. Intriguingly, the metabolic difference is more dominant between the cell status than medium effects. In addition, proliferative myoblast showed more distinct metabolic differences than differentiated myotubes in different culture conditions. The intracellular levels of GL3P and UDP-GlcNAc were significantly increased in myotubes versus myoblast. Non-essential amino acids and pyruvate reduction and transamination showed significant differences among serum, B27, and AIM-V cultures. Intracellular metabolite profiles indicated that C2C12 myotubes cultured in serum and B27 had predominant glycolytic and oxidative metabolism, respectively, indicating fast and slow types of muscle confirmed by MHC immunostaining. This work might be helpful to understand the altered metabolism of skeletal muscle cells in serum-free culture and contribute to future artificial meat research work.


Assuntos
Meios de Cultura Livres de Soro , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Mioblastos/metabolismo , Mioblastos/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Indústria Alimentícia , Carne , Desenvolvimento Muscular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Fenótipo , Fatores de Tempo
16.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35029658

RESUMO

Worldwide prevalence of obesity is associated with the increase of lifestyle-related diseases. The accumulation of intermuscular adipose tissue (IMAT) is considered a major problem whereby obesity leads to sarcopenia and metabolic disorders and thus is a promising target for treating these pathological conditions. However, whereas obesity-associated IMAT is suggested to originate from PDGFRα+ mesenchymal progenitors, the processes underlying this adipogenesis remain largely unexplored. Here, we comprehensively investigated intra- and extracellular changes associated with these processes using single-cell RNA sequencing and mass spectrometry. Our single-cell RNA sequencing analysis identified a small PDGFRα+ cell population in obese mice directed strongly toward adipogenesis. Proteomic analysis showed that the appearance of this cell population is accompanied by an increase in galectin-3 in interstitial environments, which was found to activate adipogenic PPARγ signals in PDGFRα+ cells. Moreover, IMAT formation during muscle regeneration was significantly suppressed in galectin-3 knockout mice. Our findings, together with these multi-omics datasets, could unravel microenvironmental networks during muscle regeneration highlighting possible therapeutic targets against IMAT formation in obesity.


Assuntos
Tecido Adiposo/metabolismo , Galectina 3/metabolismo , Músculo Esquelético/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Actinas/genética , Actinas/metabolismo , Adipogenia , Tecido Adiposo/citologia , Animais , Cardiotoxinas/farmacologia , Diferenciação Celular , Senescência Celular/genética , Dieta Hiperlipídica , Feminino , Galectina 3/deficiência , Galectina 3/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/patologia , PPAR gama/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/deficiência , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Regeneração , Transdução de Sinais/genética
17.
Exp Cell Res ; 411(1): 112966, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906582

RESUMO

Endogenous skeletal muscle development, regeneration, and pathology are extremely complex processes, influenced by local and systemic factors. Unpinning how these mechanisms function is crucial for fundamental biology and to develop therapeutic interventions for genetic disorders, but also conditions like sarcopenia and volumetric muscle loss. Ex vivo skeletal muscle models range from two- and three-dimensional primary cultures of satellite stem cell-derived myoblasts grown alone or in co-culture, to single muscle myofibers, myobundles, and whole tissues. Together, these systems provide the opportunity to gain mechanistic insights of stem cell behavior, cell-cell interactions, and mature muscle function in simplified systems, without confounding variables. Here, we highlight recent advances (published in the last 5 years) using in vitro primary cells and ex vivo skeletal muscle models, and summarize the new insights, tools, datasets, and screening methods they have provided. Finally, we highlight the opportunity for exponential advance of skeletal muscle knowledge, with spatiotemporal resolution, that is offered by guiding the study of muscle biology and physiology with in silico modelling and implementing high-content cell biology systems and ex vivo physiology platforms.


Assuntos
Técnicas de Cultura de Células/métodos , Desenvolvimento Muscular , Músculo Esquelético/citologia , Animais , Diferenciação Celular , Humanos
18.
Exp Cell Res ; 411(2): 112991, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34958765

RESUMO

The processes of myogenesis during both development and regeneration share a number of similarities across both amniotes and teleosts. In amniotes, the process of muscle formation is considered largely biphasic, with developmental myogenesis occurring through hyperplastic fibre deposition and postnatal muscle growth driven through hypertrophy of existing fibres. In contrast, teleosts continue generating new muscle fibres during adult myogenesis through a process of eternal hyperplasia using a dedicated stem cell system termed the external cell layer. During developmental and regenerative myogenesis alike, muscle progenitors interact with their niche to receive cues guiding their transition into myoblasts and ultimately mature myofibres. During development, muscle precursors receive input from neighbouring embryological tissues; however, during repair, this role is fulfilled by other injury resident cell types, such as those of the innate immune response. Recent work has focused on the role of macrophages as a pro-regenerative cell type which provides input to muscle satellite cells during regenerative myogenesis. As zebrafish harbour a satellite cell system analogous to that of mammals, the processes of regeneration can be interrogated in vivo with the imaging intensive approaches afforded in the zebrafish system. This review discusses the strengths of zebrafish with a focus on both the similarities and differences to amniote myogenesis during both development and repair.


Assuntos
Desenvolvimento Muscular/fisiologia , Regeneração/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Macrófagos/fisiologia , Modelos Biológicos , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Regeneração/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Mol Med Rep ; 25(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34913071

RESUMO

The antioxidant capability of herbal remedies has attracted widespread attention, but their molecular mechanisms in a muscle atrophy model have not been explored. The aim of the present study was to compare the bioactivity of sucrose challenged mice following treatment with ATG­125. Here, through a combination of transcriptomic and biomedical analysis, herbal formula ATG­125, a phytochemical­rich formula, was identified as a protective factor against muscle atrophy in sucrose challenged mice. Gene ontology (GO) identified differentially expressed genes that were primarily enriched in the 'negative regulation of proteolysis', 'cellular amino acid metabolic process', 'lipoprotein particle' and 'cell cycle', all of which were associated with the ATG­125­mediated prevention of muscle atrophy, particularly with regard to mitochondrial biogenesis. In skeletal muscle, a set of mitochondrial­related genes, including angiopoietin­like 4, nicotinamide riboside kinase 2 (Nmrk2), pyruvate dehydrogenase lipoamide kinase isozyme 4, Asc­type amino acid transporter 1 and mitochondrial uncoupling protein 3 (Ucp3) were markedly upregulated following ATG­125 intervention. An increase in Nmrk2 and Ucp3 expression were noted after ATG­125 treatment, in parallel with upregulation of the 'nicotinate and nicotinamide metabolism' pathway, as determined using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, KEGG pathway analysis revealed the downregulation of 'complement and coagulation cascades', 'cholesterol metabolism', 'biosynthesis of amino acids' and 'PPAR signaling pathway', which were associated with the downregulation of serine (or cysteine) peptidase inhibitor clade A member (Serpina)3, Serpina1b, Serpina1d, Serpina1e, apolipoprotein (Apo)a1 and Apoa2, all of which were cardiovascular and diabetes­associated risk factors and were regulated by ATG­125. In addition, ATG­125 treatment resulted in downregulated mRNA expression levels of ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2, troponin­I1, troponin­C1 and troponin­T1 in young adult gastrocnemius muscle compared with the sucrose group. Nuclear factor­κB­hypoxia inducible factor­1α­TGFß receptor type­II­vascular endothelial growth factor staining indicated that ATG­125 decreased sucrose­induced chronic inflammation. ATG­125 was sufficient to prevent muscle atrophy, and this protective effect may be mediated through upregulation of AKT phosphorylation, upregulating the insulin growth factor­1R­insulin receptor substrate­PI3K­AKT pathway, which in turn resulted in a forkhead box O­dependent decrease in protein degradation pathways, including regulation of atrogin1 and E3 ubiquitin­protein ligase TRIM63. Peroxisome­proliferator activated receptor γ coactivator 1α (PGC1α) was decreased in young adult mice challenged with sucrose. ATG­125 treatment significantly increased PGC1α and significantly increased UCP­1,2,3 expression levels, which suggested ATG­125 poised the mitochondria for uncoupling of respiration. This effect is consistent with the increased SIRT1 levels and may explain an increase in mitochondria biogenesis. Taken together, the present study showed that ATG­125, as an integrator of protein synthesis and degradative pathways, prevented muscle wasting.


Assuntos
Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Mitocôndrias/patologia , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sacarose/toxicidade
20.
Adv Sci (Weinh) ; 9(3): e2102908, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34786874

RESUMO

Cultivating meat from stem cells rather than by raising animals is a promising solution to concerns about the negative externalities of meat production. For cultivated meat to fully mimic conventional meat's organoleptic and nutritional properties, innovations in scaffolding technology are required. Many scaffolding technologies are already developed for use in biomedical tissue engineering. However, cultivated meat production comes with a unique set of constraints related to the scale and cost of production as well as the necessary attributes of the final product, such as texture and food safety. This review discusses the properties of vertebrate skeletal muscle that will need to be replicated in a successful product and the current state of scaffolding innovation within the cultivated meat industry, highlighting promising scaffold materials and techniques that can be applied to cultivated meat development. Recommendations are provided for future research into scaffolds capable of supporting the growth of high-quality meat while minimizing production costs. Although the development of appropriate scaffolds for cultivated meat is challenging, it is also tractable and provides novel opportunities to customize meat properties.


Assuntos
Carne , Músculo Esquelético/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Tecidos Suporte , Materiais Biocompatíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...